logo

Ľudské oko vo svojej štruktúre sa podobá kamerovému zariadeniu. V tomto prípade šošovka, rohovka a žiak, ktoré prenášajú svetlo a zaostrujú lúč na sietnici, lámu lúče, slúžia ako šošovka. Objektív má schopnosť meniť zakrivenie, zatiaľ čo pôsobí ako automatické zaostrovanie, ktoré umožňuje rýchle nastavenie z blízkych objektov na vzdialené. Sietnica je podobná fotografickému filmu alebo matrici digitálneho fotoaparátu a zachytáva údaje, ktoré sa potom prenášajú do centrálnych štruktúr mozgu na ďalšiu analýzu.

Komplexná anatomická štruktúra oka je veľmi citlivým mechanizmom a je vystavená rôznym vonkajším vplyvom a patológiám, ktoré sa vyskytujú na pozadí narušeného metabolizmu alebo chorôb iných telesných systémov.

Ľudské oko je párovaný orgán, ktorého štruktúra je veľmi zložitá. Vďaka práci tohto orgánu človek získa najviac (asi 90%) informácií o vonkajšom svete. Napriek tenkej a zložitej štruktúre je oko úžasne krásne a individuálne. Vo svojej štruktúre sú však spoločné znaky, ktoré sú dôležité pre vykonávanie základných funkcií optického systému. V procese evolučného vývoja došlo k významným zmenám v oku a výsledkom boli tkanivá rôzneho pôvodu (nervy, spojivové tkanivo, krvné cievy, pigmentové bunky, atď.), Ktoré našli svoje miesto v tomto jedinečnom orgáne.

Video o štruktúre ľudského oka

Štruktúra hlavných štruktúr oka

Tvar oka je podobný gule alebo guličke, takže toto telo sa nazýva aj očná guľa. Jeho štruktúra je pomerne jemná, v súvislosti s ktorou je naprogramovaná povaha vnútrosvalového usporiadania oka. Dutina obežnej dráhy spoľahlivo chráni oko pred vonkajšími fyzikálnymi vplyvmi. Predná časť očnej buľvy je pokrytá viečkami (hornou a dolnou). Na zabezpečenie pohyblivosti oka existuje niekoľko spárovaných svalov, ktoré pracujú presne a harmonicky a poskytujú binokulárne videnie.

Po celý čas mokrého povrchu oka slzná žľaza neustále uvoľňuje tekutinu, ktorá tvorí najtenší film na povrchu rohovky. Nadmerné slzy prúdia do slzného kanála.

Spojka je najvzdialenejšia obálka. Okrem očnej buľvy pokrýva vnútorný povrch viečok.

Biela škvrna oka (sclera) má najväčšiu hrúbku a chráni vnútorné štruktúry a tiež udržiava tón oka. V oblasti predného pólu skléry sa biely stáva priehľadným. Jeho tvar sa tiež mení: vyzerá ako hodinky. Táto sklera má názov rohovky. Obsahuje veľké množstvo receptorov, vďaka čomu je povrch rohovky veľmi citlivý na akékoľvek účinky. Vďaka špeciálnemu tvaru je rohovka priamo zapojená do lomu a zaostrenia svetelných lúčov prichádzajúcich zvonku.
Oblasť prechodu medzi samotnou sklérou a rohovkou sa nazýva limbus. V tomto prípade sú lokalizované kmeňové bunky, ktoré sa podieľajú na regenerácii a obnove vonkajších vrstiev rohovkovej membrány.

Vnútri skléry je stredná cievnatka. Je zodpovedná za kŕmenie tkanív a dodávku kyslíka cez cievy. Podieľa sa aj na udržiavaní tónu. Samotná choroidia sa skladá z cievovky, priliehajúcej k sklére a sietnici a dúhovky s ciliárnym telesom, ktoré sa nachádza v prednej časti oka. Tieto štruktúry majú širokú sieť ciev a nervov.

Ciliárne teleso nie je len nervovým centrom, ale aj endokrinno-svalovým orgánom, ktorý je dôležitý pri syntéze vnútroočnej tekutiny a hrá dôležitú úlohu v procese ubytovania.

Vďaka pigmentu dúhovky majú ľudia inú farbu očí. Množstvo pigmentu určuje farbu dúhovky, ktorá môže byť svetlomodrá alebo tmavohnedá. V centrálnej oblasti dúhovky je diera, ktorá sa nazýva žiak. Prostredníctvom neho prenikajú lúče svetla do očnej buľvy a padajú na sietnicu. Zaujímavé je, že dúhovka a samotná choroidia z rôznych zdrojov sú inervované a zásobované krvou. To sa odráža v mnohých patologických procesoch vyskytujúcich sa vo vnútri oka.

Medzi rohovkou a dúhovkou je priestor nazývaný predná komora. Uhol tvorený sférickou rohovkou a dúhovkou sa nazýva predný uhol oka oka. V tejto oblasti sa nachádza žilový drenážny systém, ktorý zabezpečuje odtok prebytočnej vnútroočnej tekutiny. Priamo k dúhovke za šošovkou a potom sklovcom. Šošovka je bikonvexná šošovka zavesená na množstve väzov, ktoré sa pripájajú k procesom riasnatého telesa.

Za dúhovkou a pred objektívom je zadná komora oka. Obe komory sú naplnené vnútroočnou tekutinou (komorová tekutina), ktorá cirkuluje a je kontinuálne aktualizovaná. Vďaka tomu sa do šošovky, rohovky a niektorých ďalších štruktúr dodávajú živiny a kyslík.

Hlbšie je sieťovina. Je veľmi tenká a citlivá, pozostáva z nervového tkaniva a nachádza sa v zadnej 2/3 očnej buľvy. Z nervových buniek sietnice odchádzajú vlákna optického nervu, ktoré prenášajú informácie do vyšších centier mozgu. V druhom prípade sa informácie spracujú a získa sa skutočný obraz. S jasným zameraním lúčov na sietnici je obraz prenášaný do mozgu a v prípade rozostrenia - rozmazaný. V retikulárnej vrstve je zóna s hypersenzitivitou (makula), ktorá je zodpovedná za centrálne videnie.

V samom strede očnej gule je sklovité telo, ktoré je naplnené transparentnou želé-ako látka a zaberá väčšinu oka. Jeho hlavnou funkciou je udržanie vnútorného tónu, ale aj lámanie lúčov.

Optický systém oka

Funkcia oka je optická. V tomto systéme sa rozlišuje niekoľko dôležitých štruktúr: šošovka, rohovka a sietnica. Za prenos externých informácií sú zodpovedné najmä tieto tri zložky.

Rohovka má najvyššiu refrakčnú silu. Prechádza lúčmi, ktoré ďalej prechádzajú žiakom, ktorý pôsobí ako membrána. Hlavnou funkciou žiaka je regulovať množstvo svetelných lúčov, ktoré prenikli do oka. Tento indikátor je určený ohniskovou vzdialenosťou a umožňuje získať jasný obraz o dostatočnom stupni osvetlenia.
Šošovka má tiež refrakčný a priepustný výkon. Je zodpovedný za zaostrenie lúčov na sietnici, ktorá hrá úlohu filmu alebo matrice.

Intraokulárna tekutina a sklovec majú malú refrakciu, ale dostatočnú priepustnosť. Ak ich štruktúra odhalí zakalenie alebo ďalšie inklúzie, kvalita videnia sa výrazne zníži.

Po prechode svetla cez všetky priehľadné štruktúry oka by sa mal na sietnici vytvoriť jasný inverzný obraz v menšej verzii.
Konečná transformácia vonkajších informácií sa vyskytuje v centrálnych štruktúrach mozgu (kortex okcipitálnych oblastí).

Oko je veľmi zložité, a preto porušenie aspoň jedného štrukturálneho spoja zakáže najtenší optický systém a nepriaznivo ovplyvňuje kvalitu života.

http://mosglaz.ru/blog/itemlist/category/66-stroenie-glaza.html

Štruktúra ľudského oka

Štruktúra ľudského oka obsahuje mnoho komplexných systémov, ktoré tvoria vizuálny systém, pomocou ktorého je možné získať informácie o tom, čo obklopuje osobu. Jeho zmysly, charakterizované ako spárované, sa vyznačujú komplexnosťou štruktúry a jedinečnosti. Každý z nás má individuálne oči. Ich vlastnosti sú výnimočné. Schéma štruktúry ľudského oka a funkčnosti má zároveň spoločné črty.

Evolučný vývoj viedol k tomu, že orgány videnia sa stali najkomplexnejšími formáciami na úrovni štruktúry tkanivového pôvodu. Hlavným účelom oka je poskytnúť víziu. Táto možnosť je zaručená krvnými cievami, spojivovými tkanivami, nervmi a pigmentovými bunkami. Nižšie je uvedený popis anatómie a hlavných funkcií oka so symbolmi.

Pod schémou štruktúry ľudského oka by sa malo chápať celé očné zariadenie s optickým systémom zodpovedným za spracovanie informácií vo forme vizuálnych obrazov. Zahŕňa jeho vnímanie, následné spracovanie a prenos. To všetko sa uskutočňuje vďaka prvkom tvoriacim očné gule.

Oči sú zaoblené. Jeho poloha je špeciálnym zárezom v lebke. Označuje sa ako oko. Vonkajšia časť je uzavretá viečkami a záhybmi kože, ktoré slúžia na umiestnenie svalov a rias.

Ich funkčnosť je nasledovná:

  • hydratačný, ktorý poskytuje žľazy v riasach. Sekrečné bunky tohto druhu prispievajú k tvorbe zodpovedajúcej tekutiny a hlienu;
  • ochrana pred mechanickým poškodením. To sa dosiahne uzavretím viečok;
  • odstránenie najmenších častíc padajúcich na skléru.

Fungovanie systému videnia je konfigurované tak, aby prenášalo prijaté svetelné vlny s maximálnou presnosťou. V tomto prípade sa vyžaduje starostlivé ošetrenie. Dotknuté zmysly sú krehké.

Kožné záhyby sú očné viečka, ktoré sú neustále v pohybe. Bliká. Táto funkcia je k dispozícii v dôsledku prítomnosti väzov umiestnených na okrajoch očných viečok. Tieto útvary tiež pôsobia ako spojovacie prvky. S ich pomocou sú očné viečka pripojené k očnej jamke. Koža tvorí hornú vrstvu očných viečok. Potom nasleduje vrstva svalov. Ďalej je chrupavka a spojivka.

Očné viečka v časti vonkajšieho okraja majú dva okraje, kde jeden je predný a druhý je zadný. Tvoria medzikrajový priestor. Toto sú kanály pochádzajúce z meibomských žliaz. S ich pomocou je vyvinuté tajomstvo, ktoré umožňuje zasunúť viečka s extrémnou ľahkosťou. Keď sa to dosiahne, vytvorí sa hustota uzáveru viečka a podmienky na správne odstránenie slznej tekutiny.

Na prednej hrane sú žiarovky, ktoré zabezpečujú rast rias. Patria sem aj kanály, ktoré slúžia ako transportné cesty na vylučovanie mastných kyselín. Tu sú nálezy potných žliaz. Uhly viečok korelujú so zisteniami slzných ciest. Zadný okraj zaisťuje, že každé viečko tesne prilieha k očnej buľvy.

Očné viečka sú charakterizované komplexnými systémami, ktoré poskytujú týmto orgánom krv a podporujú správnosť vedenia nervových impulzov. Karotická artéria je zodpovedná za zásobovanie krvou. Regulácia na úrovni nervového systému - používanie motorických vlákien, ktoré tvoria nervy tváre, ako aj poskytovanie primeranej citlivosti.

Medzi hlavné funkcie storočia patrí ochrana pred poškodením spôsobeným mechanickým namáhaním a cudzími telesami. K tomu by sa mala pridať funkcia zvlhčovania, ktorá podporuje nasýtenie vlhkosťou vnútorných tkanív orgánov videnia.

Očná zásuvka a jej obsah

Pod kostnou dutinou sa rozumie očná jamka, ktorá sa tiež označuje ako kostná dráha. Slúži ako spoľahlivá ochrana. Štruktúra tejto zostavy obsahuje štyri časti - hornú, dolnú, vonkajšiu a vnútornú. Tvoria súvislý celok vďaka stabilnému prepojeniu medzi nimi. Ich sila je však iná.

Zvlášť spoľahlivá vonkajšia stena. Vnútorný je oveľa slabší. Tupé zranenia môžu vyvolať jeho zničenie.

Zvláštnosti stien kostnej dutiny zahŕňajú ich blízkosť k vzduchovým dutinám:

  • vnútri - labyrint mreže;
  • dno - čeľustná dutina;
  • top - frontálna prázdnota.

Takéto štruktúrovanie vytvára určité nebezpečenstvo. Nádorové procesy, ktoré sa vyvíjajú v dutinách, sa môžu šíriť do dutiny orbity. Prípustné a opačné pôsobenie. Okružná dutina komunikuje s lebečnou dutinou cez veľký počet otvorov, čo naznačuje možnosť prechodu zápalu do oblastí mozgu.

žiak

Zrenica oka je kruhový otvor umiestnený v strede dúhovky. Jeho priemer môže byť zmenený, čo umožňuje nastaviť stupeň prenikania svetelného toku do vnútornej oblasti oka. Svaly žiaka vo forme zvierača a dilatátora poskytujú podmienky na zmenu osvetlenia sietnice. Použitie zvierača zúží zornicu a dilatátor sa rozšíri.

Takéto fungovanie uvedených svalov je podobné spôsobu, akým pôsobí membrána fotoaparátu. Oslepujúce svetlo vedie k poklesu jeho priemeru, ktorý odreže príliš intenzívne svetelné lúče. Podmienky sa vytvárajú pri dosiahnutí kvality obrazu. Nedostatok osvetlenia vedie k odlišnému výsledku. Clona sa rozširuje. Kvalita obrazu je stále vysoká. Tu môžete hovoriť o funkcii membrány. S jeho pomocou je poskytnutý pupilárny reflex.

Veľkosť žiakov je regulovaná automaticky, ak je takýto výraz platný. Ľudská myseľ tento proces explicitne nekontroluje. Prejav pupilárneho reflexu je spojený so zmenami jasu sietnice. Absorpcia fotónov začína procesom prenosu relevantných informácií, kde adresátmi sú nervové centrá. Požadovaná odozva zvierača sa dosiahne po spracovaní signálu nervovým systémom. Jeho parasympatické rozdelenie prichádza do praxe. Čo sa týka dilatátora, tu prichádza sympatické oddelenie.

Reflexy žiakov

Reakcia vo forme reflexu je zabezpečená citlivosťou a excitáciou motorickej aktivity. Po prvé, signál je vytvorený ako odozva na určitý efekt, nervový systém prichádza do hry. Potom nasleduje špecifická reakcia na podnet. Práca zahŕňa svalové tkanivo.

Osvetlenie spôsobuje, že žiak sa zužuje. Toto odstrihne oslepujúce svetlo, čo má pozitívny vplyv na kvalitu videnia.

Takáto reakcia môže byť charakterizovaná nasledovne:

  • priame - osvetlené jedným okom. On odpovedá podľa potreby;
  • priateľský - druhý orgán videnia nie je osvetlený, ale reaguje na svetelný efekt na prvé oko. Účinok tohto typu sa dosahuje tým, že sa vlákna nervového systému čiastočne prekrývajú. Vytvorená chiasma.

Podráždenie vo forme svetla nie je jedinou príčinou zmeny priemeru žiakov. Možné sú aj také momenty, ako je konvergencia - stimulácia aktivity rektálnych svalov zrakového orgánu a ubytovanie - aktivácia ciliárneho svalu.

Vzhľad uvažovaných reflexných šošoviek sa objavuje vtedy, keď sa zmení bod stabilizácie videnia: oko sa prenáša z objektu umiestneného vo veľkej vzdialenosti k objektu nachádzajúcemu sa v bližšej vzdialenosti. Aktivujú sa proprioceptory spomínaných svalov, ktoré sú zabezpečené vláknami, ktoré idú do očnej buľvy.

Emocionálny stres, napríklad v dôsledku bolesti alebo strachu, stimuluje dilatáciu žiakov. Ak je trigeminálny nerv podráždený, čo indikuje nízku excitabilitu, pozoruje sa zúženie. Také reakcie sa vyskytujú pri užívaní určitých liekov, ktoré excitujú receptory zodpovedajúcich svalov.

Optický nerv

Funkciou optického nervu je doručenie správ v určitých oblastiach mozgu, určených na spracovanie svetelných informácií.

Svetelné impulzy sa najskôr dostanú do sietnice. Umiestnenie vizuálneho centra je určené okcipitálnym lalokom mozgu. Štruktúra optického nervu predpokladá prítomnosť niekoľkých zložiek.

V štádiu vnútromaternicového vývoja sú štruktúry mozgu, vnútornej výstelky oka a zrakového nervu identické. To dáva dôvod tvrdiť, že táto časť je časťou mozgu, ktorá je mimo hraníc lebky. Zvyčajné kraniálne nervy majú zároveň odlišnú štruktúru.

Dĺžka optického nervu je malá. Je 4 - 6 cm, prednostne je to miesto za očnou guľou, kde je ponorená do tukovej bunky obežnej dráhy, ktorá zaručuje ochranu pred vonkajším poškodením. Očná buľva v zadnej časti paži je oblasť, kde začína nerv tohto druhu. V tomto bode dochádza k akumulácii nervových procesov. Tvoria akýsi disk (ONH). Tento názov je spôsobený sploštenou formou. Pohyb ďalej, nerv vstupuje na obežnú dráhu, nasledovaný ponorením do mozgových blán. Potom sa dostane do prednej lebečnej fossy.

Zrakové cesty tvoria chiasm vo vnútri lebky. Pretínajú sa. Táto vlastnosť je dôležitá pri diagnostike očných a neurologických ochorení.

Priamo pod chiasmom je hypofýza. Záleží na jeho stave, ako efektívne je endokrinný systém schopný pracovať. Takáto anatómia je jasne viditeľná, ak nádorové procesy ovplyvňujú hypofýzu. Rada patológie tohto druhu sa stáva opticko-chiasmatickým syndrómom.

Vnútorné vetvy karotickej artérie sú zodpovedné za poskytnutie optického nervu krvou. Nedostatočná dĺžka ciliárnych artérií vylučuje možnosť dobrého prekrvenia optického disku. Zároveň ostatné časti dostávajú krv v plnej výške.

Spracovanie svetelnej informácie je priamo závislé od optického nervu. Jeho hlavnou funkciou je doručovanie správ týkajúcich sa prijatého obrazu konkrétnym príjemcom vo forme zodpovedajúcich oblastí mozgu. Akékoľvek poškodenie tejto formácie, bez ohľadu na závažnosť, môže viesť k negatívnym dôsledkom.

Fotoaparáty

Uzavreté priestory v očnej gule sú takzvané kamery. Obsahujú vnútroočnú vlhkosť. Existuje spojenie medzi nimi. Existujú dve takéto formácie. Jeden zaujme prednú pozíciu a druhý zadný. Žiak vystupuje ako odkaz.

Predný priestor sa nachádza bezprostredne za oblasťou rohovky. Zadná strana je ohraničená dúhovkou. Pokiaľ ide o priestor za clonou, je to zadná kamera. Vitreózne telo slúži ako jej podpora. Nezmeniteľná hlasitosť kamery je normou. Produkcia vlhkosti a jej odtok sú procesy, ktoré prispievajú k prispôsobeniu sa štandardným objemom. Produkcia očnej tekutiny je možná v dôsledku funkčnosti ciliárnych procesov. Jeho odtok zabezpečuje odvodňovací systém. Nachádza sa v prednej časti, kde rohovka kontaktuje skléru.

Funkciou kamier je udržiavať „spoluprácu“ medzi vnútroočnými tkanivami. Sú tiež zodpovedné za príchod svetelných tokov na sietnici. Lúče svetla pri vstupe sa zodpovedajúcim spôsobom lámu v kĺbovej aktivite s rohovkou. To sa dosahuje prostredníctvom vlastností optiky, ktoré sú vlastné nielen vlhkosti vo vnútri oka, ale aj v rohovke. Vytvára efekt objektívu.

Rohovka v časti svojej endotelovej vrstvy pôsobí ako vonkajší obmedzovač prednej komory. Otočenie zadnej strany je tvorené dúhovkou a šošovkou. Maximálna hĺbka dopadá na oblasť, kde sa nachádza žiak. Jeho hodnota dosahuje 3,5 mm. Pri prechode na perifériu tento parameter pomaly klesá. Niekedy je táto hĺbka väčšia, napríklad v neprítomnosti šošovky v dôsledku jej odstránenia alebo menej, ak sa cievka odlúpne.

Zadný priestor je obmedzený predným listom dúhovky a jeho chrbát spočíva na sklovcovom tele. V úlohe interného obmedzovača slúži rovník objektívu. Vonkajšia bariéra tvorí ciliárne teleso. Vnútri je veľké množstvo Zinnových väzov, ktoré sú tenké. Vytvárajú vzdelávanie, pôsobia ako spojenie medzi ciliárnym telom a biologickou šošovkou vo forme šošovky. Forma tejto formy je schopná meniť sa pod vplyvom ciliárneho svalu a zodpovedajúcich väzov. To poskytuje požadovanú viditeľnosť objektov bez ohľadu na ich vzdialenosť.

Zloženie vlhkosti vo vnútri oka koreluje s vlastnosťami krvnej plazmy. Intraokulárna tekutina umožňuje dodávať živiny, ktoré sú potrebné na zabezpečenie normálneho fungovania orgánov videnia. Tiež s jeho pomocou, možnosť odstránenia produktov výmeny.

Kapacita komôr je určená objemami v rozsahu od 1,2 do 1,32 cm3. Je dôležité, ako produkcia a odtok očnej tekutiny. Tieto procesy vyžadujú rovnováhu. Akékoľvek narušenie fungovania takéhoto systému vedie k negatívnym dôsledkom. Existuje napríklad pravdepodobnosť vzniku glaukómu, ktorý ohrozuje vážne problémy s kvalitou videnia.

Ciliárne procesy slúžia ako zdroj očnej vlhkosti, čo sa dosahuje filtráciou krvi. Okamžitým miestom, kde sa tekutá forma nachádza, je zadná komora. Potom sa presunie dopredu s následným odtokom. Možnosť tohto procesu je určená rozdielom v tlaku vytvoreným v žilách. V poslednom štádiu tieto cievy absorbujú vlhkosť.

Schlemmov kanál

Medzera vo vnútri skléry, charakterizovaná ako kruhová. Pomenovaný podľa mena nemeckého lekára Friedricha Schlemma. Predná komora v časti svojho uhla, kde je spojenie dúhovky a rohovky, je presnejšou oblasťou Schlemmovho kanála. Jeho účelom je odstrániť humor s následnou absorpciou prednou ciliárnou žilou.

Štruktúra kanála je viac korelovaná so spôsobom, akým lymfatické cievy vyzerajú. Vnútorná časť, ktorá prichádza do styku s vlhkosťou, je tvorená sieťovinou.

Kapacita kanála, pokiaľ ide o dopravu tekutín, je od 2 do 3 mikro litrov za minútu. Zranenia a infekcie blokujú prácu kanála, čo vyvoláva výskyt ochorenia vo forme glaukómu.

Prívod krvi do oka

Tvorba krvného obehu do orgánov videnia je funkciou oftalmickej artérie, ktorá je neoddeliteľnou súčasťou štruktúry oka. Vytvorí sa zodpovedajúca vetva z karotickej artérie. Dostáva sa do oka a preniká do obežnej dráhy, ktorá ju tvorí spolu s optickým nervom. Potom sa zmení jeho smer. Nerv sa ohýba zvonku tak, že vetva je na vrchole. Oblúk je tvorený svalovými, ciliárnymi a inými vetvami, ktoré z neho vychádzajú. Centrálna tepna zabezpečuje zásobovanie sietnice krvou. Plavidlá zapojené do tohto procesu tvoria svoj systém. Zahŕňa aj ciliárne artérie.

Potom, čo je systém v očnej buľvy, je rozdelený do vetiev, čo zaručuje dobrú výživu sietnice. Takéto formácie sú definované ako terminál: nemajú spojenia s blízkymi plavidlami.

Ciliárne artérie sa vyznačujú polohou. Zadné sa dostanú do zadnej časti očnej buľvy, obchádzajú skléru a rozchádzajú sa. Vlastnosti prednej časti obsahujú skutočnosť, že sa líšia dĺžkou.

Ciliárne artérie, definované ako krátke, prechádzajú sklérou a tvoria oddelenú vaskulárnu formáciu pozostávajúcu z viacerých vetiev. Pri vstupe do skléry sa z tepien tohto druhu vytvára cievna koruna. Vyskytuje sa tam, kde vzniká zrakový nerv.

Kratšie ciliárne artérie sa tiež objavia v očnej buľvy a ponáhľajú sa do riasnatého telesa. V prednej oblasti sa každé takéto plavidlo delí na dva kmene. Vytvorí sa útvar s koncentrickou štruktúrou. Potom sa stretávajú s podobnými vetvami inej tepny. Vytvorí sa kruh, definovaný ako veľký arteriál. Na mieste, kde sa nachádza ciliárny a pupilárny irisový pás, existuje aj podobná tvorba menších veľkostí.

Ciliárne artérie, charakterizované ako predné, sú súčasťou tohto typu svalovej cievy. Neskončia v oblasti tvorenej rovnými svalmi, ale ďalej sa tiahnu. Dochádza k ponoreniu do episklerálneho tkaniva. Po prvé, tepny prechádzajú pozdĺž okraja očnej buľvy a potom do nej prechádzajú cez sedem vetiev. V dôsledku toho sú navzájom prepojené. Pozdĺž obvodu dúhovky sa tvorí kruh krvného obehu, označený ako veľký.

Pri prístupe k očnej guľôčke sa vytvorí slučková sieť pozostávajúca z ciliárnych artérií. Zapletá rohovku. K dispozícii je tiež divízia, ktorá nie je vetva, ktorá zabezpečuje prekrvenie spojivky.

Časť odtoku krvi prispieva k žilám, ktoré idú spolu s tepnami. Toto je väčšinou možné vďaka tomu, že sa venózne cesty zhromažďujú v oddelených systémoch.

Zvláštnymi zberateľmi sú vírové žily. Ich funkciou je odber krvi. Prechod týchto žíl skléry prebieha v šikmom uhle. S ich pomocou je zabezpečené odoberanie krvi. Vstúpi do oka. Hlavným odberateľom krvi je očná žila v hornej polohe. Prostredníctvom zodpovedajúcej medzery sa zobrazuje v dutine dutej.

Očná žila dole odoberá krv z vírov, ktoré prechádzajú týmto miestom. Je to rozdelenie. Jedna vetva sa pripája k očnej žile nachádzajúcej sa nad ňou a druhá dosahuje hlbokú žilu tváre a štrbinový priestor s pterygoidným procesom.

V podstate prietok krvi z žlčových žíl (predné) vyplní tieto cievy na obežnej dráhe. Výsledkom je, že hlavný objem krvi vstupuje do venóznych dutín. Vytvorí sa spätný tok. Zostávajúca krv sa pohybuje dopredu a vypĺňa žily tváre.

Orbitálne žily sú spojené so žilami nosnej dutiny, ciev tváre a etmoidnej dutiny. Najväčšiu anastomózu tvoria žily orbity a tváre. Jeho hranica ovplyvňuje vnútorný roh viečka a pripája sa priamo k očnej žile a tvári.

Svalové oči

Možnosť dobrého a trojrozmerného videnia sa dosahuje vtedy, keď sú očné bulvy schopné pohybovať sa určitým spôsobom. Osobitne dôležitá je pritom súdržnosť práce zrakových orgánov. Garantom takéhoto fungovania je šesť svalov oka, z ktorých štyri sú rovné a dva sú šikmé. Tieto sa nazývajú kvôli konkrétnemu kurzu.

Kraniálne nervy sú zodpovedné za aktivitu týchto svalov. Vlákna uvažovanej svalovej skupiny sú maximálne nasýtené nervovými zakončeniami, čo z nich robí prácu s vysokou presnosťou.

Prostredníctvom svalov zodpovedných za fyzickú aktivitu očných buliev sú k dispozícii rôzne pohyby. Potreba implementovať túto funkciu je určená potrebou koordinovanej práce tohto typu svalových vlákien. Rovnaké obrazy objektov by mali byť upevnené na rovnakých miestach sietnice. To vám umožní cítiť hĺbku priestoru a dokonale vidieť.

Štruktúra svalov očí

Svaly očí začínajú v blízkosti kruhu, ktorý slúži ako prostredie optického kanála v blízkosti vonkajšieho otvoru. Výnimka sa týka len šikmého svalového tkaniva, ktoré zaberá nižšiu polohu.

Svaly sú usporiadané tak, že tvoria lievik. Vedú cez ne nervové vlákna a krvné cievy. S rastúcou vzdialenosťou od začiatku tejto formácie je šikmý sval umiestnený vyššie vychýlený. Tam je posun smerom k druhu bloku. Tu sa mení na šľachu. Prechádzanie cez slučku bloku nastavuje smer pod uhlom. Sval je pripevnený v hornej časti dúhovky. Šikmý sval (spodný) začína tam, od okraja orbity.

Ako sa svaly približujú k očnej buľke, vytvára sa hustá kapsula (tenonova membrána). Spojenie je vytvorené s sklérou, ktorá sa vyskytuje s rôznymi stupňami vzdialenosti od limbu. V minimálnej vzdialenosti je vnútorný rektus, maximálne - zvršok. Fixácia šikmých svalov sa robí bližšie k stredu očnej buľvy.

Funkciou okulomotorického nervu je udržiavať správne fungovanie svalov oka. Zodpovednosť abnormálneho nervu je determinovaná udržiavaním aktivity rectus svalov (externých) a svalových svalov, čo je šikmá vrchná časť. Pre reguláciu tohto druhu má svoju vlastnú zvláštnosť. Kontrola malého počtu svalových vlákien sa vykonáva jednou vetvou motorického nervu, čo výrazne zvyšuje jasnosť pohybov očí.

Svalové pripevňovacie nuansy nastavujú variabilitu pohybu očných buliev. Priame svaly (vnútorné, vonkajšie) sú pripevnené tak, aby boli vybavené horizontálnymi otáčkami. Aktivita vnútorného rektálneho svalu vám umožňuje otočiť očné gule smerom k nosu a vonkajšie - k chrámu.

Pre vertikálne pohyby sú zodpovedné priame svaly. Tam je nuancia ich umiestnenie, vzhľadom k tomu, že existuje určitý sklon línie fixácie, ak sa sústredíte na líniu končatiny. Táto okolnosť vytvára podmienky, keď sa spolu s vertikálnym pohybom očnej gule otočí dovnútra.

Fungovanie šikmých svalov je zložitejšie. Je to kvôli zvláštnostiam umiestnenia tohto svalového tkaniva. Zníženie oka a otáčanie smerom von je zabezpečené šikmým svalom umiestneným na vrchu a výstup, vrátane otáčania smerom von, je tiež šikmým svalstvom, ale už spodnou stranou.

Ďalšia možnosť týchto svalov zahŕňa poskytnutie menších otočení očnej buľvy v súlade s pohybom hodinovej ručičky, bez ohľadu na smer. Regulácia na úrovni udržiavania potrebnej aktivity nervových vlákien a koherencie práce očných svalov sú dve veci, ktoré prispievajú k realizácii komplexných zákrutov očných buliev akéhokoľvek smeru. Výsledkom je, že vízia získava majetok, ako je objem, a jeho jasnosť sa výrazne zvyšuje.

Oko shell

Tvar oka sa udržiava vďaka zodpovedajúcim puzdrám. Hoci táto funkčnosť týchto subjektov nie je vyčerpaná. S ich pomocou sa vykonáva dodávka živín a podporuje sa proces ubytovania (jasná vízia objektov, keď sa mení vzdialenosť od nich).

Zrakové orgány sa vyznačujú viacvrstvovou štruktúrou, ktorá sa prejavuje vo forme nasledujúcich membrán:

Vláknitá membrána oka

Spojivové tkanivo, ktoré vám umožní mať špecifický tvar oka. Pôsobí tiež ako ochranná bariéra. Štruktúra vláknitej membrány naznačuje prítomnosť dvoch zložiek, z ktorých jedna je rohovka a druhá je sclera.

rohovka

Shell, charakterizovaný transparentnosťou a elasticitou. Tvar zodpovedá konvexne konkávnej šošovke. Funkčnosť je takmer identická s objektívom fotoaparátu: zameriava sa na lúče svetla. Konkávna strana rohovky sa pozerá späť.

Zloženie tohto obalu je tvorené cez päť vrstiev:

očné bielko

V štruktúre oka hrá dôležitú úlohu vonkajšia ochrana očnej buľvy. Tvorí vláknitú membránu, ktorá tiež zahŕňa rohovku. Naproti tomu posledná sklera je nepriehľadná tkanina. Je to spôsobené chaotickým usporiadaním kolagénových vlákien.

Hlavnou funkciou je vysokokvalitné videnie, ktoré je zaručené z hľadiska prevencie prenikania svetelných lúčov cez skléru.

Eliminuje možnosť zaslepenia. Táto formácia tiež slúži ako podpora pre zložky oka, ktoré sa vyberú z očnej buľvy. Patria sem nervy, cievy, väzy a okulomotorické svaly. Hustota štruktúry zabezpečuje, že vnútroočný tlak je udržiavaný na daných hodnotách. Prilby canal fungujú ako transportný kanál, ktorý zabezpečuje odtok vlhkosti z očí.

cievovka

Vytvorené na základe troch častí:

kosatec

Časť cievnatky, ktorá sa líši od ostatných častí tejto formácie v tom, že jej čelná poloha je opačná ako parietálna, ak sa sústredíte na rovinu limbu. Je to disk. V strede je otvor, známy ako žiak.

Štruktúrne sa skladá z troch vrstiev:

  • hranicu, ktorá sa nachádza vpredu;
  • stromálne;
  • svalového pigmentu.

Tvorba prvej vrstvy zahŕňa fibroblasty, ktoré sú vzájomne prepojené prostredníctvom svojich procesov. Za nimi sú melanocyty obsahujúce pigmenty. Farba dúhovky závisí od počtu týchto špecifických kožných buniek. Táto funkcia je zdedená. Hnedá dúhovka je dominantná z hľadiska dedičnosti a modrá je recesívna.

Vo väčšine novorodencov má dúhovka svetlo modrý odtieň, ktorý je spôsobený slabo vyvinutou pigmentáciou. K šiestim mesiacom sa farba stmaví. Je to spôsobené rastúcim počtom melanocytov. Neprítomnosť melanosómov v albínov vedie k dominancii ružovej. V niektorých prípadoch je možná heterochrómia, keď oči v častiach dúhovky dostávajú rôzne farby. Melanocyty môžu vyvolať rozvoj melanómov.

Ďalšie ponorenie do strómy otvára sieť pozostávajúcu z veľkého počtu kapilár a kolagénových vlákien. Šírenie posledného zachytáva svaly dúhovky. Existuje spojenie s ciliárnym telom.

Zadná vrstva dúhovky pozostáva z dvoch svalov. Žltý sfinkter, pripomínajúci prsteň, a dilatátor majúci radiálnu orientáciu. Fungovanie prvého poskytuje okulomotorický nerv a druhý sympatický. Prítomný je aj pigmentový epitel ako súčasť nediferencovanej oblasti sietnice.

Hrúbka dúhovky sa mení v závislosti od konkrétnej oblasti tohto útvaru. Rozsah týchto zmien je 0,2–0,4 mm. Minimálna hrúbka je pozorovaná v koreňovej zóne.

Stred dúhovky zaberá žiak. Jeho šírka je premenlivá pod vplyvom svetla, ktoré zabezpečujú zodpovedajúce svaly. Väčšie osvetlenie vyvoláva kompresiu a menej expanziu.

Iris v časti predného povrchu je rozdelený na pupilárny a riasnatý pás. Šírka prvej je 1 mm a druhá 3 až 4 mm. Rozdiel v tomto prípade poskytuje druh valca s prevodovým tvarom. Svaly žiaka sú rozdelené nasledovne: zvierač je pupilárny pás a dilatátor je ciliárny.

Ciliárne artérie, ktoré tvoria veľký arteriálny kruh, dodávajú dúhovke krv. Na tomto procese sa zúčastňuje aj malý arteriálny kruh. Inervácia tejto konkrétnej cievnatej zóny sa dosahuje ciliárnymi nervami.

Ciliárne teleso

Oblasť cievovky, zodpovedná za produkciu očnej tekutiny. Takýto názov sa použil aj ako ciliárny orgán.
Štruktúra predmetného útvaru je svalové tkanivo a krvné cievy. Svalový obsah tejto membrány naznačuje prítomnosť niekoľkých vrstiev s rôznymi smermi. Ich aktivita zahŕňa šošovku. Jeho tvar sa mení. Výsledkom je, že človek má možnosť jasne vidieť objekty na rôznych vzdialenostiach. Ďalšou funkciou ciliárneho telesa je udržanie tepla.

Krvné kapiláry nachádzajúce sa v ciliárnych procesoch prispievajú k tvorbe vnútroočnej vlhkosti. Tam je filtrácia prietoku krvi. Vlhkosť tohto typu zabezpečuje správne fungovanie oka. Udržiava konštantný vnútroočný tlak.

Tiež ciliárne teleso slúži ako opora pre dúhovku.

Choroid (Choroidea)

Oblasť cievneho traktu, umiestnená za ním. Hranice tejto škrupiny sú obmedzené na zrakový nerv a zubnú líniu.
Hrúbka zadného pólu je od 0,22 do 0,3 mm. Pri približovaní sa k zubatej línii klesá na 0,1–0,15 mm. Choroid v časti ciev sa skladá z ciliárnych artérií, kde chrbát krátko smeruje k rovníku a predné idú k cievnici, keď sú tieto pripojené k prvej v prednej oblasti.

Ciliárne artérie obchádzajú skléru a dosahujú suprachoroidálny priestor ohraničený cievnatkou a sklérou. Dochádza k rozpadu do významného počtu vetiev. Stávajú sa základom choroid. Pozdĺž obvodu hlavy optického nervu sa tvorí cievny kruh Zinna-Galera. Niekedy môže byť v oblasti makuly prítomná ďalšia vetva. Je viditeľná buď na sietnici alebo na disku zrakového nervu. Dôležitý bod v embólii centrálnej tepny sietnice.

Choroid obsahuje štyri zložky:

  • supravaskulárne s tmavým pigmentom;
  • vaskulárny hnedastý odtieň;
  • cievna kapilára, podporujúca prácu sietnice;
  • bazálna vrstva.

Sietnica (sietnica)

Sietnica je periférna časť, ktorá spúšťa vizuálny analyzátor, ktorý hrá dôležitú úlohu v štruktúre ľudského oka. S jeho pomocou sa zachytávajú svetelné vlny, premieňajú sa na impulzy na úrovni excitácie nervového systému a ďalšie informácie sa prenášajú optickým nervom.

Sietnica je nervové tkanivo, ktoré tvorí časť očnej buľvy v jeho vnútornej výstelke. Obmedzuje priestor vyplnený sklovcovým telom. Ako vonkajší rám slúži cievnici. Hrúbka sietnice je malá. Parameter zodpovedajúci norme je len 281 mikrónov.

Z vnútornej strany je povrch očnej gule väčšinou pokrytý sietnicou. Začiatok sietnice sa môže považovať za podmienene optický disk. Ďalej sa rozprestiera na takú hranicu ako zubatá čiara. Potom sa premení na pigmentový epitel, obalí vnútorný obal ciliárneho telesa a rozšíri sa do dúhovky. Optický disk a línia zubov sú oblasti, kde je retinálna kotva najspoľahlivejšia. Na iných miestach sa jeho spojenie odlišuje malou hustotou. Táto skutočnosť vysvetľuje skutočnosť, že tkanina sa ľahko odlupuje. To vyvoláva mnoho vážnych problémov.

Štruktúra sietnice je tvorená niekoľkými vrstvami, ktoré sa líšia v rôznych funkciách a štruktúre. Sú navzájom úzko prepojené. Vytvoril intímny kontakt, ktorý spôsobil vytvorenie toho, čo sa nazýva vizuálny analyzátor. Prostredníctvom svojej osoby, možnosť správne vnímať svet, keď adekvátne posúdenie farby, tvaru a veľkosti objektov, rovnako ako vzdialenosť k nim.

Lúče svetla v kontakte s okom prechádzajú niekoľkými refrakčnými médiami. Pod nimi treba rozumieť rohovku, očné tekutiny, priehľadné telo šošovky a sklovec. Ak je lom svetla v normálnom rozsahu, potom v dôsledku takéhoto prechodu svetelných lúčov na sietnici vzniká obraz predmetov, ktoré prichádzajú do úvahy. Výsledný obraz je odlišný v tom, že je invertovaný. Ďalej, určité časti mozgu dostávajú zodpovedajúce impulzy a človek získa schopnosť vidieť, čo ho obklopuje.

Z hľadiska štruktúry sietnice je najkomplexnejšia tvorba. Všetky jeho komponenty navzájom úzko spolupracujú. Je viacvrstvový. Poškodenie akejkoľvek vrstvy môže viesť k negatívnemu výsledku. Vizuálne vnímanie ako funkčnosť sietnice poskytuje troj-neurónová sieť, ktorá vedie excitáciu z receptorov. Jeho zloženie je tvorené širokým spektrom neurónov.

Sietnicové vrstvy

Sietnica tvorí „sendvič“ s desiatimi radmi:

1. Pigmentový epitel priľahlý k Bruchovej membráne. Líši sa v širokej funkčnosti. Ochrana, bunková výživa, doprava. Prijíma odmietnutie segmentov fotoreceptorov. Slúži ako bariéra pre vyžarovanie svetla.

2. Fotosenzorická vrstva. Bunky, ktoré sú citlivé na svetlo, vo forme tyčí a kužeľov. V tyčinkovitých valcoch obsahuje vizuálny segment rhodopsínu a v šiškách - jodopsíne. Prvý poskytuje vnímanie farieb a periférne videnie a druhý zrak pri slabom osvetlení.

3. Hraničná membrána (vonkajšia). Štruktúrne sa skladá z terminálnych foriem a vonkajších miest receptorov sietnice. Štruktúra Müllerových buniek vďaka svojim procesom umožňuje zbierať svetlo na sietnici a dodávať ju na zodpovedajúce receptory.

4. Jadrová vrstva (vonkajšia). Názov dostal vďaka tomu, že sa vytvára na základe jadier a telies fotosenzitívnych buniek.

5. Plexiformná vrstva (vonkajšia). Určené kontaktmi na úrovni bunky. Vyskytujú sa medzi neurónmi charakterizovanými ako bipolárne a asociatívne. Patria sem aj fotosenzitívne útvary tohto druhu.

6. Jadrová vrstva (vnútorná). Vytvorené z rôznych buniek, napríklad bipolárne a Mller. Dopyt po tomto je spojený s potrebou zachovať funkcie nervového tkaniva. Iné sú zamerané na spracovanie signálov z fotoreceptorov.

7. Plexiformná vrstva (vnútorná). Spájanie nervových buniek v častiach ich procesov. Slúži ako separátor medzi vnútrom sietnice, charakterizovaným ako vaskulárna a vonkajšia - nevaskulárna.

8. Gangliové bunky. Poskytujú voľný prienik svetla z dôvodu nedostatku takéhoto pokrytia ako myelínu. Sú mostom medzi fotocitlivými bunkami a optickým nervom.

9. Ganglionova bunka. Podieľa sa na tvorbe zrakového nervu.

10. Hraničné membrány (vnútorné). Pokrytie sietnice zvnútra. Pozostáva z Müllerových buniek.

Optický systém oka

Kvalita videnia závisí od hlavných častí ľudského oka. Stav prechodu rohovky, sietnice a šošovky priamo ovplyvňuje, ako človek uvidí: zlé alebo dobré.

Rohovka má väčšiu úlohu pri lome svetelných lúčov. V tomto kontexte môžeme nakresliť analógiu s princípom kamery. Membrána je žiak. Nastavuje tok svetelných lúčov a ohnisková vzdialenosť nastavuje kvalitu obrazu.

Vďaka šošovke dopadajú svetelné lúče na "film". V našom prípade by sa pod ním malo rozumieť sietnica.

Sklovcové telo a vlhkosť v očných komorách tiež lámu svetelné lúče, ale v oveľa menšej miere. Hoci stav týchto formácií významne ovplyvňuje kvalitu videnia. Môže sa zhoršiť znížením stupňa priehľadnosti vlhkosti alebo vzhľadu krvi v ňom.

Správne vnímanie sveta prostredníctvom orgánov videnia naznačuje, že prechod svetelných lúčov cez všetky optické médiá vedie k vytvoreniu redukovaného a invertovaného obrazu na sietnici, ale v skutočnosti. Konečné spracovanie informácií z vizuálnych receptorov nastáva v mozgu. Za to sú zodpovedné okcipitálne laloky.

Lacrimálne prístroje

Fyziologický systém, ktorý zabezpečuje produkciu špeciálnej vlhkosti s jej následným vytiahnutím do nosovej dutiny. Orgány slzného systému sú klasifikované podľa sekrečného oddelenia a slzného aparátu. Funkciou systému je párovanie jeho orgánov.

Práca koncovej časti je vytvoriť trhliny. Jeho štruktúra zahŕňa slznú žľazu a ďalšie formácie podobného typu. Prvým sa rozumie serózna žľaza, ktorá má komplexnú štruktúru. Je rozdelená na dve časti (spodná, horná), kde šľacha svalu zodpovedného za zdvíhanie horného viečka pôsobí ako separačná bariéra. Plocha na vrchole z hľadiska veľkosti je nasledovná: 12 x 25 mm s hrúbkou 5 mm. Jeho poloha je určená stenou orbity, ktorá má smer nahor a von. Táto časť zahŕňa vylučovacie tubuly. Ich počet sa pohybuje od 3 do 5. Výstup sa vykonáva v spojivke.

Čo sa týka spodnej časti, má menej významné rozmery (11 x 8 mm) a menšiu hrúbku (2 mm). Má tubuly, kde niektoré sú spojené s rovnakými útvarmi hornej časti, zatiaľ čo iné sú zobrazené v spojivkovom vaku.

Poskytnutie slznej žľazy krvou sa vykonáva cez slznú tepnu a odtok je organizovaný do slznej žily. Trigeminálny nerv na tvári pôsobí ako iniciátor zodpovedajúcej excitácie nervového systému. S týmto procesom sú spojené aj sympatické a parasympatické nervové vlákna.

V štandardnej situácii fungujú len extra žľazy. Svojou funkčnosťou sa vytvára trhlina v objeme asi 1 mm. To poskytuje požadovanú vlhkosť. Čo sa týka hlavnej slznej žľazy, vstúpi do platnosti, keď sa objavia rôzne druhy podnetov. Môžu to byť cudzie telá, príliš jasné svetlo, emocionálne výbuchy atď.

Štruktúra oddelenia slezootvodyaschy je založená na formáciách, ktoré podporujú pohyb vlhkosti. Sú tiež zodpovední za jej stiahnutie. Takéto fungovanie je zabezpečené slzným prúdom, jazerom, bodmi, tubulami, vakom a nasolacrimálnym kanálom.

Tieto body sú dokonale vizualizované. Ich umiestnenie je určené vnútornými rohmi očných viečok. Sú zamerané na slzné jazero a sú v tesnom kontakte so spojivkou. Vytvorenie spojenia medzi vakom a bodmi sa dosahuje pomocou špeciálnych tubulov, ktoré dosahujú dĺžku 8 - 10 mm.

Umiestnenie slzného vaku je určené kostným fossa umiestneným v blízkosti uhla obežnej dráhy. Z hľadiska anatómie je táto formácia uzavretá dutina valcovitého tvaru. Je predĺžená o 10 mm a jej šírka je 4 mm. Na povrchu vrecka je epitel, ktorý má vo svojom zložení pohárikový glandulocyt. Prietok krvi zabezpečuje očná tepna a výtok je zabezpečený malými žilami. Časť vaku pod ňou komunikuje s nosovým kanálom, ktorý prechádza do nosovej dutiny.

Sklovitý humor

Látka podobná gélu. Napĺňa očné gule o 2/3. Líši sa v priehľadnosti. Pozostáva z 99% vody, ktorá má vo svojom zložení kyselinu hyalouránovú.

V prednej časti je zárez. Je pripevnený k objektívu. Inak je táto tvorba v kontakte so sietnicou v časti jej membrány. Optický disk a šošovka sú korelované pomocou hyaloidného kanála. Štruktúrne je sklovité telo tvorené kolagénovým proteínom vo forme vlákien. Existujúce medzery medzi nimi sú naplnené kvapalinou. To vysvetľuje, že predmetné vzdelávanie je želatínová hmota.

Na periférii sú hyalocyty - bunky, ktoré podporujú tvorbu kyseliny hyalurónovej, proteínov a kolagénov. Podieľajú sa aj na tvorbe proteínových štruktúr známych ako hemidesmozómy. S ich pomocou sa vytvorí tesné spojenie medzi sietnicovou membránou a samotným sklovcom.

Medzi hlavné funkcie týchto funkcií patria:

  • dávať oku špecifický tvar;
  • lom svetla;
  • vytvorenie určitého napätia v tkanivách zrakového orgánu;
  • dosiahnutie účinku nestlačiteľnosti oka.

fotoreceptory

Typ neurónov, ktoré tvoria sietnicu. Poskytujú spracovanie svetelného signálu takým spôsobom, že sa konvertujú na elektrické impulzy. To spúšťa biologické procesy vedúce k tvorbe vizuálnych obrazov. V praxi fotoreceptorové proteíny absorbujú fotóny, ktoré saturujú bunku zodpovedajúcim potenciálom.

Fotosenzitívne formácie sú zvláštne palice a kužele. Ich funkčnosť prispieva k správnemu vnímaniu objektov vonkajšieho sveta. V dôsledku toho môžeme hovoriť o vytvorení zodpovedajúceho efektu - vízie. Človek je schopný vidieť v dôsledku biologických procesov vyskytujúcich sa v takých častiach fotoreceptorov ako vonkajšie podiely ich membrán.

Stále existujú bunky citlivé na svetlo, známe ako Hesenské oči. Sú umiestnené vo vnútri pigmentovej bunky, ktorá má tvar pohárika. Práca týchto formácií spočíva v zachytení smeru svetelných lúčov a určovaní jeho intenzity. Používajú sa na spracovanie svetelného signálu, keď sa na výstupe vytvárajú elektrické impulzy.

Ďalšia trieda fotoreceptorov sa stala známou v 90. rokoch. To znamená fotosenzitívne bunky ganglionickej vrstvy sietnice. Podporujú vizuálny proces, ale nepriamo. To znamená biologické rytmy počas dňa a pupilárny reflex.

Takzvané tyče a kužele z hľadiska funkčnosti sa navzájom výrazne líšia. Napríklad prvý sa vyznačuje vysokou citlivosťou. Ak je osvetlenie nízke, garantuje vytvorenie aspoň nejakého vizuálneho obrazu. Táto skutočnosť dáva jasne najavo, prečo sa pri slabom osvetlení zle rozlišujú farby. V tomto prípade je aktívny len jeden typ fotoreceptora - tyčinky.

Jasné svetlo je potrebné na prevádzku kužeľov, aby sa zabezpečil prechod vhodných biologických signálov. Štruktúra sietnice naznačuje prítomnosť kužeľov rôznych typov. Sú tri z nich. Každý identifikuje fotoreceptory, ktoré sú naladené na špecifickú vlnovú dĺžku svetla.

Pre vnímanie obrázkov vo farbe sú časti kortexu zamerané na spracovanie vizuálnych informácií, čo znamená rozpoznanie impulzov vo formáte RGB. Kužele sú schopné rozlíšiť svetelný tok vlnovou dĺžkou, charakterizujúc ich ako krátke, stredné a dlhé. V závislosti od toho, koľko fotónov je schopných absorbovať kužeľ, vznikajú zodpovedajúce biologické reakcie. Rôzne odpovede týchto formácií sú založené na špecifickom počte vybraných fotónov určitej dĺžky. Najmä fotoreceptorové proteíny L-kužeľov absorbujú podmienenú červenú farbu, korelovanú s dlhými vlnami. Lúče svetla s kratšou dĺžkou môžu viesť k rovnakej odpovedi, ak sú dostatočne jasné.

Reakcia toho istého fotoreceptora môže byť vyvolaná vlnami svetla rôznej dĺžky, keď sú pozorované rozdiely na úrovni intenzity svetelného toku. Ako výsledok, mozog nie vždy určiť svetlo a výsledný obraz. Prostredníctvom vizuálnych receptorov je výber a výber najjasnejších lúčov. Potom sa vytvoria biosignály, ktoré vstupujú do častí mozgu, kde dochádza k spracovaniu informácií tohto typu. Vytvorí sa subjektívne vnímanie optického obrazu vo farbe.

Sietnica ľudského oka sa skladá zo 6 miliónov kužeľov a 120 miliónov tyčí. U zvierat je ich počet a pomer odlišný. Hlavným vplyvom je životný štýl. Sietnica sietnice obsahuje veľmi významné množstvo tyčiniek. Ľudský vizuálny systém je takmer 1,5 milióna gangliových buniek. Medzi nimi sú bunky s fotosenzitivitou.

šošovka

Biologická šošovka, charakterizovaná tvarom ako bikonvexná. Pôsobí ako prvok svetlovodu a systému lomu svetla. Poskytuje možnosť zamerať sa na objekty odstránené v rôznych vzdialenostiach. Nachádza sa na zadnej strane fotoaparátu. Výška šošovky je od 8 do 9 mm s hrúbkou 4 až 5 mm. S vekom sa zahusťuje. Tento proces je pomalý, ale pravdivý. Predná časť tohto priehľadného telesa má menej konvexný povrch ako chrbát.

Tvar šošovky zodpovedá bikonvexnej šošovke s polomerom zakrivenia vpredu asi 10 mm. V tomto prípade na zadnej strane tento parameter nepresahuje 6 mm. Priemer šošovky - 10 mm, a veľkosť vpredu - od 3,5 do 5 mm. Látka obsiahnutá vo vnútri je držaná tenkostennou kapsulou. Čelná časť má epitelové tkanivo umiestnené nižšie. Na zadnej strane epitelu kapsuly č.

Epiteliálne bunky sa líšia v tom, že sa delia kontinuálne, ale to neovplyvňuje objem šošovky z hľadiska jej zmeny. Táto situácia je spôsobená dehydratáciou starých buniek umiestnených v minimálnej vzdialenosti od stredu priehľadného telesa. To pomáha znížiť ich objemy. Proces tohto typu vedie k takýmto vlastnostiam, ako je veková zrak. Keď človek dosiahne vek 40 rokov, elasticita šošovky sa stratí. Rezerva na ubytovanie klesá a schopnosť dobre vidieť v tesnej vzdialenosti sa výrazne zhoršuje.

Šošovka je umiestnená priamo za clonou. Jeho retencia je zabezpečená tenkými vláknami, ktoré tvoria zinkový zväzok. Jeden koniec z nich vstupuje do škrupiny šošovky a druhý je upevnený na ciliárnom telese. Stupeň napätia týchto nití ovplyvňuje tvar priehľadného telesa, ktoré mení refrakčnú silu. V dôsledku toho je možný proces ubytovania. Šošovka slúži ako hranica medzi dvoma divíziami: prednou a zadnou.

Priraďte nasledujúce funkcie objektívu:

  • svetelná vodivosť - je dosiahnutá vďaka tomu, že telo tohto prvku oka je transparentné;
  • refrakcia svetla - funguje ako biologická šošovka, pôsobí ako druhé refrakčné médium (prvé je rohovka). V pokoji je hodnota refrakčného výkonu 19 dioptrií. Toto je norma;
  • ubytovanie - zmena tvaru priehľadného telesa tak, aby mal dobrý výhľad na objekty v rôznych vzdialenostiach. Refrakčný výkon sa v tomto prípade pohybuje od 19 do 33 dioptrií;
  • oddelenie - tvorí dve časti oka (predné, zadné), ktoré je určené miestom. Pôsobí ako bariéra zadržujúca sklovité telo. Nesmie byť v prednej komore;
  • ochrana - zaistená biologická bezpečnosť. Patogény, raz v prednej komore, nie sú schopné preniknúť sklovcom.

Vrodené ochorenia v niektorých prípadoch vedú k vytesneniu šošovky. Zaoberá sa nesprávnou polohou vzhľadom na to, že väzivový aparát je oslabený alebo má nejaký štrukturálny defekt. Zahŕňa to aj pravdepodobnosť vrodených opacity jadra. To všetko pomáha znížiť videnie.

Zinnova parta

Tvorba na báze vlákien definovaných ako glykoproteín a zónová. Poskytuje fixáciu šošovky. Povrch vlákien je pokrytý mukopolysacharidovým gélom, čo je spôsobené potrebou ochrany pred vlhkosťou prítomnou v komôrkach oka. Priestor za šošovkou slúži ako miesto, kde sa táto formácia nachádza.

Aktivita zinálneho väziva vedie k redukcii ciliárneho svalu. Šošovka mení zakrivenie, ktoré umožňuje zaostriť na objekty v rôznych vzdialenostiach. Svalové napätie zmierňuje napätie a šošovka preberá tvar blízko ku lopte. Relaxácia svalov vedie k napätiu vlákien, ktoré splošťuje šošovku. Zameranie sa mení.

Predpokladané vlákna sú rozdelené do zadnej a prednej časti. Jedna strana zadných vlákien je pripojená k zubatému okraju a druhá k čelnej oblasti šošovky. Východiskový bod predných vlákien je základom ciliárnych procesov a pripojenie sa uskutočňuje v zadnej časti šošovky a bližšie k rovníku. Skrížené vlákna prispievajú k vytvoreniu štrbinového priestoru pozdĺž okraja šošovky.

Upevnenie vlákien na ciliárne teleso sa uskutočňuje v časti sklovitej membrány. V prípade oddelenia týchto útvarov sa v dôsledku jeho premiestnenia uvádza tzv. Dislokácia šošovky.

Zinnova väzba pôsobí ako hlavný prvok systému, ktorý poskytuje možnosť ubytovania oka.

http://oftalmologiya.info/17-stroenie-glaza.html
Up